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Bonding and structure of intermetallics: a new
bond order potential

By D.G.PETTIFOR AND M. AoKI

Department of Mathematics, Imperial College of Science, Technology and Medicine,
London SW7 2BZ, U.K.

Intermetallics such as the transition metal aluminides present theorists with a
challenge since bonding is not well described by currently available pair or embedded
atom potentials. We show that a new angularly dependent, many-body potential for
the bond order has all the necessary ingredients for an adequate description. In
particular, by linearizing the moment-recursion coefficient relations, a cluster
expansion is derived which is applicable to any lattice and chemical ordering and
which allows a derivation of the earlier ring ansatz. It can account for both the
negative Cauchy pressure of cubic metals and the oscillatory behaviour across the
transition metal aluminide series of the three-body cluster interaction @,.

1. Introduction

Intermetallics have come to the fore during the past few years with the realization
that polycrystalline Ni Al could be ductilized by adding very small amounts of boron
(Aoki & Izumi 1979). The search for new intermetallics for use at high temperatures,
in jet engines for example, has focused on the transition metal aluminides which are
often both light and oxidation resistant (Dimiduk & Miracle 1989). In particular,
alloy designers have been interested in whether it is possible to ductilize the tri-
aluminides AL,T by alloying so that their crystal structure changed from tetragonal
(and brittle) to cubic (and hopefully ductile).

Structure maps, which order the known structural data base on binary compounds
within a limited number of two-dimensional or three-dimensional plots, can provide
a useful guide in the search for new pseudo-binary alloys with a required structure
type (Pettifor 1991). Figure 1 shows the relevant part of the AB, structure map
which has ordered ‘the wood from the trees’ by characterizing each element in the
periodic table with a single phenomenological coordinate, called the Mendeleev
number # (Pettifor 1988). We see that the intermetallics Al,Hf, ALTi, Al,Ta,
ALNb, and Al,V with Mendeleev numbers ranging from .4, equals 50 to 53
respectively all fall within the tetragonal DO,, domain. It was known that AL, Ti
could be stabilized in the cubic L1, crystal structure by replacing some of the
aluminium with Cu, Ni, or Fe. The structure map suggests that it might be possible
to stabilize the other tetragonal tri-aluminides in the cubic crystal structure by
alloying so that the average Mendeleev number for the B sites moves down into the
cubic L1, domain.

This hope has only been partially realized. Schneibel & Porter (1989) have lndeed
succeeded in stabilizing cubic Al,Zr by alloying to take the average Mendeleev
number .# down into the cubic domain. However, attempts to stabilize cubic Al;Nb
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Figure 1. Relevant part of the AB, structure map showing the transition metal tri-aluminides.
(After Nicholson et al. 1989.)

have failed (Subramanian et al. 1989). Moreover, the cubic tri-aluminides based on
Al,Zr and Al,Ti still remain brittle, cleaving transgranularly, even though they have
the same crystal structure as ductile single crystals of Cu,Au or Ni,Al. Theorists, are,
therefore, faced with two immediate problems regarding the transition metal tri-
aluminides: (i) Why if the cubic close-packed phase can be stabilized, does it remain
brittle ¢ (ii) Why can some tetragonal tri-aluminides be stabilized in the cubic form
(e.g. AL,Ti) but others cannot (e.g. AL,Nb)? We shall see that the answer to both
questions requires a proper quantum mechanical treatment of the bonding at the
atomistic level.

2. A new bond order potential

A clue to the origin of the brittleness of the cubic transition metal tri-aluminides
is provided by their elastic constants. Fu (1991) has recently calculated within first
principles local density functional theory that cubic Al,Ti has a Cauchy pressure
C1,—Cyy of —0.08 x 10" N m™2, which is to be compared with a Cauchy pressure of
+0.13 x 10 N m~2 for Ni,Al. This has important consequences for the nature of the
bonding at the atomistic level. If the bonding is describable by nearest-neighbour
pairwise potentials such as Lennard-Jones, then the Cauchy pressure would be zero.
If the bonding is more metallic in that spherical atoms are embedded in the electron
gas of the surrounding neighbours, then the Cauchy pressure would be positive
(Johnson 1988). A negative Cauchy pressure puts cubic AL;Ti in the same class as the
four-fold coordinated semi-conductor Si with a €, —C,, of —0.16 x 10'* N m~2. This
implies that angularly dependent many-body forces are playing a crucial role in the
transition metal tri-aluminides.

Recently a new many-body potential for the bond order has been proposed which
explicitly includes the angular character of the bonding orbitals (Pettifor 1989,

Phil. Trans. R. Soc. Lond. A (1991)
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1990). It is derived from tight binding Hiickel theory in which the quantum
mechanical bond energy between a given pair of atoms ¢ and j is written in the
chemically intuitive form as follows:

U%)jond = 2k(sz) @ij’ (21)

where A(R;) is the appropriate o, m or 6 bond integral between atoms ¢ and j a
distance R, apart (see eqs (65) and (80) of Pettifor (1990)) and @, is the
corresponding bond order which is defined as the difference between the number of
electrons of a given spin in the bonding J5l¢;+¢;> and anti-bonding Jsl¢,— ;>
states. The factor 2 in equation (2.1) accounts for spin degeneracy. The bonding
between any given pair of atoms will, of course, be weakened by the presence of
bonds with other neighbouring atoms. Thus the bond order is not pairwise but is
dependent on the surrounding atomic environment.

Its analytic dependence may be obtained by using the recursion method of
Haydock et al. (1972) to write the bond order as an integral over the difference of two
continued fractions:

v

1 By
0, - ‘;;Imf (G (B)— G ()| 4, 2.2)

where y is the Fermi energy and Im is the imaginary part of the bonding and
antibonding Green’s functions which are given by

Goo(B) = ug (B —H) ™ ug >

1
= E—ad)— R B —af)—.. (23)

where |uf ) = 5|¢; £ ¢,>. The coefficients are determined by the Lanczos recursion
algorithm, namely

bE  lug > = Hluzd—af|lug)—b7lui_,> (2.4)

with the boundary condition that |u%,) vanishes. The hamiltonian H is, therefore,
tridiagonal with respect to the recursion basis |u} ), having non-zero elements

Qug|Hlug ) = ag (2.5)
and Quig| Hlug > = bz, (2.6)

Thus the hamiltonian with respect to the bonding and antibonding recursion basis
may be characterized by the semi-infinite linear chain with site diagonal elements a;*
and intersite hopping matrix elements b%,,, namely

+ + + +

2 ai ay Ay-1 Ay
X—bf—x—bf—x——x— by— x—:-
0 1 2 n—1 n

A many-body form for the bond order may be derived by performing perturbation
theory with respect to the average semi-infinite linear chain, namely

a _ o _ Ap1 Oy
X b= X by X e X b, X e
0 1 2 n—1 n
Phil. Trans. R. Soc. Lond. A (1991)
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442 D. Q. Pettifor and M. Aoki
where @, = Ya}+a;) and b, = b} +b;). It follows from the first-order Dyson
equation that

Gi =GO+ G G B, +2 2 G nry O 8D, 2.7)

n=0

where 8a,, = Y(a},—a;,), db, = 3(b},—b,), and G° is the Green’s function for the average
semi-infinite linear chain. Substituting into (2.2) the bond order becomes

@ = —2[ 2 Xon, nO(EF) 6an +2 2 XO(n—l), nO(EF) Sbn], (28)
n=1

n=0

where the response functions yx,,, ,.(#y) are defined by

Xom, nolE —ImJ E) G (E)dE. (2.9)

The coefficients da,, b, may be written in terms of the local topology about the
bond by using the well-known relationship between the recursion coefficients a;f, b
and the moments pf = (uf|H"|ui), namely

pE =1, (2.10)
pit = ag, (2.11)
py = (ag)*+ ()%, (2.12)
uE = (af)*+2ai (bE)2 +ai (b )2, (2.13)
pE = (a§F)*+3(ag)® (bF)* + 2a5 af (bf)*
+(@f)? (b)) + (bF)? (b5F)* + (bi)* (2.14)
and #i = (ay)’ +4(ag)® (0F * +3(ay)  ai (bF)°

+3af (bE)" + 203 (af)? (bF)* + 20 (bF)? (bF)?

+2a (bF) + 2aF (bF) (bF)* + (af)? (bF)?

+ag (bi)? (bF)*. (2.15)

The difference between the bonding and antibonding moments may be displayed
explicitly by writing
7 =tnt 8 (2.16)

where it follows that since |uf) = v2|¢i+¢j> we have that u, is the average nth
moment with respect to the appropriate orbitals on site ¢ and j, namely

= 3<H" | $> + {PAH" $;D] = $H iy + 1)) (2.17)
and {,,, is the interference term, namely
Cnir = {PdH"| B> (2.18)

The interference terms control the bond order which can be seen using the moment
expansion for G*, namely

GH2)—6(2) = zf;,,ff” —2 ¥ gm (2.19)
- t
Phil. Trans. R. Soc. Lond. A (1991)
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A new bond order potential 443

However, the moment expansion is notoriously ill conditioned. We, therefore,
rewrite the stable recursion expansion for the bond order, equation (2.8), in terms of
the {,,; by linearizing the moment-recursion coefficient relations in equations
(2.10)—(2.15). We find to first order in ¢, ,/u/?, taking @, = u, = 0 as the reference
energy, that the average recursion coefficients @,, b, are given by

@y = =0, (2.20)
by = u, (2.21)
@y = s/ o, (2.22)
by = (o ty— 3/ PE— o)}, (2.23)
and @y = [ 05— 2p5( o/ o — 15/ 15) — 13/ 131/ (61)* (B,)*. (2.24)

That is, to first order, the average coefficients @,,b,, which enter the reference
response functions Xy, »o(Ey), are determined solely by the average moments u,
which characterize the average Green’s function associated with the appropriate
orbitals on sites ¢ and j, namely

G(E) = %[Gu(E) +ij(E)]~ (2.25)

The coefficients da,, 8b,, on the other hand, are given to first order in {,,, by
da, = &, = {Pi|H| ), ( )
8b, = &/ (21), (2.27)
8ay = o/ e — (ps/ 1) & — 28, ( )
8by = [ — (2te/ 13) Ca— (Mo pro— 2065/ 5 + 1) o+ 205 £1/12(51)° By, ( )

and

— 208 s — 13/ 145
s, = {6~

2 8 ]
| o M2 pa b3 pa(by)® pa(by)?] ™

- 3 22 3 2
_ &_@_%_m(&__&w)( s | s "3)2)+2ﬂ3]c3

(e 3 pi Ky M3 3(0y)% " (By)®  pa(by

[ 203185 o 205 2p3 4#%] }/ e e

B VT S T P . S L M 4 P Y[R L L] (2.30)
uatby)® T T T T (e [ L0

The coefficients 8a,,, 8b, take a particularly transparent form if we assume that
b, = b, and p,,,/pE" V2 < 1. It then follows from equations (2.26)—(2.30) that

da, = &,, (2.31)

286, = &/ 1k, (2.32)

day = (§a—2p285)/ s, ‘ (2.33)

28b, = (6 —3pa &)/ 1, (2.34)

and day = [Cs—4pta(Ca— 202 &) — 3 & — 21, &)/ 13- (2.35)

The {, can be represented diagrammatically as in figure 2. The first diagram

Phil. Trans. R. Soc. Lond. A (1991)
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a—ﬂ\*
c—{y N
PRV,

EheREN
PN

Figure 2. Diagrammatic representation of the 1nterference terms &, between atoms ¢ and j.

represents the ring term ¢, in which all n sites are distinct and there are no self-
retracing paths, whereas the latter diagrams are dressed by self-retracing paths
which must be summed over all nearest neighbour sites. We have neglected double-
counting terms which involve hopping backwards and forwards between atoms ¢ and
j. This is a good approximation for s orbitals on lattices with large local coordination
z as the hops to the z nearest neighbours swamp the double-counting contribution.
It follows from equations (2.31)—(2.35) that the dressed diagrams cancel from the
-da,,, 8b,, leaving only the ring terms, namely

ay =&, (2.36)
8b, = &3/23, (2.37)
8a, = L5/ oy (2.38)
8y = £1/2s, (2.39)
and da, = &/ pa. (2.40)

The response functions consistent with equations (2.36)—(2.40), which were derived
by neglectlng odd moments and taking b, = b,, are those corresponding to a reference
semi-infinite linear chain with @, = 0, b = b, =b. They may be written (Pettifor
1989) a8 Xom. no = Xmins2/10l for m = n—l or n where the reduced susceptibility

1[sin(m+n+1)¢F_sin(Vn+n+3>¢F] (2.41)

X'"J'"”(M:E m+n+1 m+n+3

with ¢ = arccos (K/2b). ¢ is fixed by the number of valence electrons per spin per
bond, N, through

= (2¢5/m) [1—(sin 2¢x)/ 2. (2.42)
Figure 3 shows the behaviour of the first five reduced response functions y, as a

function of the number of valence electrons per spin per bond. We see that the
number of nodes (excluding the end points) equals (n—2).

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 3 Figure 4
, . ; 0.15 - — .
0.4
0.10 |
g
2 02t 0.05 | ]
E 1 T /\
S -0.05 [ T :
& 0.2 BCC-FCC
-0.10 [ ~— HCP-FCC |
L -0.4 L L L ~0.15 1 L L L L I L " L
0.0 05 1.0 15 2.0 0 2 4 6 8 10
21 Number of valence electrons per bond Mi
= >= Figure 3. The reduced response functions ¥, as a function of the number of valence electrons per
@) = spin per bond N.
(= E Figure 4. The total bond energy difference (in units of band width) between Bcc, HcP, and Fcc
= O transition metals as a function of the number of valence d electrons per atom N, for the Bcc lattice.
= w We shall refer to the use of equations (2.36)—(2.41) as the ring approximation (RA),

in which the bond order is written

O =23 .V /b (2.43)

2

e

Elsewhere we have used the ra potential to investigate the relative stability of linear,
square, or tetrahedral s-valent clusters (Pettifor 1989) and the angular character of
the embedding function b for sp- and sd-valent systems (Pettifor 1990). Here we
demonstrate that it reproduces the observed trends in crystal structure and elastic
constants across the transition metal series,

Figure 4 shows the total bond energy difference between the Bcc, HCP, and Fcc
lattices as a function of the number of valence d electrons per atom, retaining the first
five terms in (2.43). We seen that it shows the well-known trend from HCP - BCO —
HCP — FOC(— BCC) across the non-magnetic 4d and 5d series (see, for example, fig. 35
of Pettifor (1983)). The Bcc stability for nearly half-full bands is associated with the
four-membered ring term through y,, the cubic versus hexagonal stability with the
six-membered ring term through y,.

Figure 5 shows the behaviour of the Cauchy pressure C,, —C,, as a function of the
number of valence d electrons per atom for the Bcc lattice. We see that it oscillates
in sign, so that the RA potential (unlike pair or embedded atom potentials) can
account naturally for the negative Cauchy pressures of brittle metals such as
elemental Fce Ir or the cubic pseudo-binary intermetallic Al,Ti. It remains to fit RA
potentials to these specific systems and to model the behaviour of their defects such
as dislocation cores or crack tips atomistically. In another publication (Aoki &
Pettifor 1991) we present analytic expressions for the response functions beyond the
rA and examine in detail the convergence of the bond order series equation (2.8) and
the accuracy of linearizing the moment-recursion coefficient relations equations
(2.10)—(2.15).
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3. Two- and three-body cluster interactions

The linearized bond order potential can also shed light on why some tetragonal tri-
aluminides can be stabilized in the cubic form (e.g. Al,Ti) but others cannot (e.g.
AL ND). Carlsson (1989) has recently used the Connolly-Williams method to find the

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 5 Figure 6
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Figure 5. The Cauchy pressure C,, —C,, as a function of the number of valence d electrons per atom
N, for the Bce lattice.

Figure 6. The three-body cluster interaction @, for the 4d transition metal aluminides (after
Carlsson 1989). The squares denote the predictions of Miedema’s model.

effective interaction parameters in a cluster.expansion for the total binding energy
of Fco-based transition metal aluminides, namely

U= Dy+D,{0;)+ P {0, 0'j> + ®,{0; 0 o)+ P o,0,0 o). (3.1)

Here o, is a spin-like variable which takes the value 1 and —1 for transition and

aluminium atoms respectively. The averages are taken over all sites, nearest-

neighbour pairs, nearest-neighbour triangles, and nearest-neighbour tetrahedra.
The heat of formation for the disordered transition metal aluminide T Al,_, is then

given by

AHYS(c) = —4c(1—c) [@y— (1 —2¢) Py +2(1 — 2¢ +2¢%) D, ]. (3.2)

We see that regular solution behaviour is determined by the two-body cluster
interaction @,, whereas the skewing of the heat of formation curve is determined by
the three-body cluster interaction @,. Carlsson’s (1989) local density functional
calculations predict that @, oscillates across the transition metal aluminide series as
shown for the 4d series in figure 6. For @, < 0 the parabolic regular solution curve
is skewed towards the aluminium rich end, whereas for @; > 0 the curve is skewed
towards the transition metal rich end. Thus figure 6 predicts that rcc-based Al,Zr (or
AL, Ti) will be more stable than rcc-based AlZr, (or AlTi,), whereas rcc-based Al;Nb
(or AL, V) will be less stable than Fcc-based AINb, (or AlV,). It is, thus, not surprising
that ALTi can be stabilized in the cubic L1, form but AlNb cannot be. (In the latter
case tetragonal distortion lowers the observed DO,, lattice by about 1 eV per formula
unit compared to the cubic L1, lattice.)

What is the origin of the oscillations in @,? We see in figure 6 that the Miedema
‘macroscopic atom’ model does not predict such rapid variations across the series
(Carlsson 1989). The beauty of the linearized bond order potential is that it provides
for the first time a cluster expansion which is applicable to any lattice and chemical
ordering (cf. equations (2.8) and (2.26)—(2.30)).

To understand the quantum mechanical origin of @, in the transition metal
aluminides, let us consider the simpler case of transition metal intermetallics A B, _,
where the A and B atoms are characterized by atomic d energy levels —3AE and
+1AFE respectively and off-diagonal disorder is neglected. The heat of formation may

then be written AHYS = AHS 4 AHUS (3.3)

Phil. Trans. R. Soc. Lond. A (1991)
[ 54 ]
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(b)
(a)

O—O

Figure 7. The two-body (a) and three-body (b) diagrams which contribute to @, and @,
respectively. The bubbles represent hopping on the same site, which would give a factor —iAE
(+1AE) for an A (B) atom.

where AHYS is the usual contribution to the heat of formation due to differences in
the equlhbrlum atomic volume of the pure constituents. The contribution from the
change in the bond energy may be arranged as

20(1—0) |OF5 — 4O + O8] }
nJ

3.4
Fe(O% — @3,) + (1—c) (O%5 — OF, (64)

A = Y1020
where, for simplicity, the explicit o, 7, and 8 bond character has been averaged out
in an effective bond integral # < 0 (see, for example, p. 80 of Pettifor 1987) and the
prefactor 10 accounts for the d band degeneracy. %5, @4, and O are the bond
orders of the AB, AA, and BB bonds in the disordered A B,_, alloy respectively,
whereas @4, and Oy are the bond orders of the AA and BB bonds in pure A and
pure B respectively.

The response functions describing the AB and the average of the AA and BB bond
orders in the disordered alloy are the same, as both are determined by the average
of the moments about sites A and B through (2.17) and (2.20)-(2.24). Thus,
neglecting the change in the AA and BB bond orders in going from the elemental
metals to the alloy, (3.4) for the heat of formation may be written as

AHSS,, = 202|h] (1 —c) {z A2 T L Awbn]}, (3.5)
-0 n=1

where Al8a,] = [8ay,]ap—[8a,](an+BB)2 (3.6)
and A[8b,] = [8b,]x5—[8bn](an+BBY2- (3.7)
The heat of formation, therefore, depends on those diagrams which are different
between the AB and the average AA and BB bond orders. It follows from

(2.26)—(2.30) that within the raA the first two nearest-neighbour terms in the cluster
expansion are

AHGE,q = 202|h] ¢(1—c) {2(h/b) (AE/2b)* %4 3(N 5+ Np)]
+2(1—2¢) (h/b)* (AE/2b) §o[3(N s+ Np)]},  (3.8)

which correspond to the two diagrams shown in figure 7. y, and ¥, are functions of
the average number of valence electrons per spin per AB bond, namely 3(V, +Ny).

The two-body and three-body cluster interactions are given by comparing (3.2)
and (3.8). Assuming a rectangular density of states of width W for which [b| =
W/4/12 and a close-packed lattice for which » = 12, we have

D, =—5vV3WAE/W) %, (3.9)
and D, = —3BW(AE/W)? ¥6. (3.10)

This predicted behaviour of @, and @, as a function of the average number of valence
electrons per AB bond is similar to that found computationally using the

Phil. Trans. R. Soc. Lond. A (1991)
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Connolly—Williams method for transition metal intermetallics (see fig. 1a of Sluiter
& Turchi 1989) and for the transition metal aluminides in figure 6 (Carlsson 1989).
We see, therefore, that the rapid oscillations in @, are real, reflecting the wave
mechanical nature of the three-body diagram in figure 7.

4. Conclusion

We have shown that the theoretically derived bond order potentials should be
invaluable for the atomistic simulation of intermetallics where both the angular
character and the many-body nature of the potential are important. We illustrated
this for the case of metals with negative Cauchy pressure which in the past could not
be treated realistically by other available potentials (see, for example, Johnson
1988). In addition we demonstrated that the very important deviations from regular
solution behaviour are a direct consequence of an explicit three-body term in a newly
derived cluster expansion. It remains to apply these bond order potentials to specific
systems such as Foc iridium or L1, Al;Ti in order to explore the possible microscopic
mechanisms which may be responsible for their unexpected brittleness.
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Discussion

J. N. MurreLL (University of Sussex, U.K.). The concept of bond order is not
sufficiently well defined outside the simplest systems (e.g. organic hydrocarbons) for
this to form the basis of quantitatively successful theories. The reason for this is that
bond orders for, say, triangles of different side lengths, are not unambiguously
defined.

D. G. PerTiFoRr. The simple two-centre, orthogonal tight binding Hiickel theory has
been shown to predict successfully the trends in crystal structure of elemental
systems through the periodic table, of binary intermetallics through the AB, AB,,
and AB, structure maps, and of small microclusters of carbon and silicon. The many-
body potential for the bond order is derived directly from this TB model and,
therefore, is well based to predict trends in structural behaviour.

A. CortrELL (Department of Materials Science, Cambridge, U.K.). To avoid brittleness
I think a short Burgers vector is needed, i.e. not a superlattice vector. This means
that the two atoms in the intermetallic have to be fairly indifferent towards one
another, which implies a modest melting point. That from the practical point of view
is a depressing conclusion, but it might be possible to bypass it with a disordered
intermetallic. Does Professor Pettifor have a view on this?

D. G. PerTirFor. My only comment is that the well-known ductilization of Ni;Al
polycrystals by adding boron appears to be due to the boron attracting excess nickel
to the grain boundary, thereby setting up a disordered layer which improves the
mechanical properties. We have still to perform atomistic simulations of crack tips
in elemental and binary metals with these new angularly dependent bond order
potentials, and to study the influence of ordering energy on the mechanical response.

A. M. StroneuaM (Harwell, U.K.). Professor Pettifor has used a non-self-consistent
approach ; for metals, one can see this could work, but for semiconductors (where
defect charge state matters, e.g. in Fermi level effects on dislocation motion) surely
more is required ?

D. G. PerTiFoRr. Yes, of course.
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